Reaction Chemistry of Alkynyl-Functionalized Titanocenes. X-ray Structure Analyses of $(\eta^5-C_5H_4SiMe_3)_2Ti(Cl)(CH_2SiMe_3)$ and $[(\eta^5-C_5H_4SiMe_3)_2Ti(Cl)(C\equiv CSiMe_3)]CuBr$

H. Lang,* W. Frosch, I. Y. Wu, S. Blau, and B. Nuber

Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Received January 31, 1996[®]

The synthesis and reaction chemistry of the mono (σ -alkynyl) titanocene chlorides [Ti](Cl)(C=CR) {[Ti] = (η^5 - $C_5H_4SiMe_3)_2Ti;$ **2a**, R = Ph; **2b**, R = SiMe_3} is described. Treatment of compounds **2a** and **2b** with ClMgCH₂-SiMe₃ or LiC=CR' yields [Ti](CH₂SiMe₃)(C=CSiMe₃) (3) or [Ti](C=CR)(C=CR') (5a, R = Ph, R' = SiMe₃; **5b**, R = R' = Ph; **5c**, $R = R' = SiMe_3$), respectively. The reaction of compounds **2a**, **2b**, or **5a** with polymeric $[CuX]_n$ (X = Cl, Br, I) produces the heterobimetallic titanium-copper complexes {[Ti](Cl)(C=CR)}CuX (6a, R = Ph, X = Cl; **6b**, R = Ph, X = Br; **6c**, R = Ph, X = I; **7a**, R = SiMe₃, X = Cl; **7b**, R = SiMe₃, X = Br) or $\{[Ti](C \equiv CPh)(C \equiv CSiMe_3)\}$ CuX (8a, X = Cl; 8b, X = Br). While compounds 2a and 2b do not react with $[AgX]_n$ (X = Cl, Br), it is found that the bis(σ -alkynyl)titanocene **5a** is able to break down the polymeric structure of $[AgX]_n$ to produce the heterobimetallic compounds $\{[Ti](C \equiv CPh)(C \equiv CSiMe_3)\}AgX$ (10a, X = Cl; 10b, X = Br). Moreover, compound 8a can be synthesized by treatment of 2a or 2b with $[CuC \equiv CR']_n$ ($R' = SiMe_3$, Ph). However, when compound 3 is reacted with $[CuCl]_n$ under appropriate reaction conditions, the formation of $\{[Ti](C \equiv CSiMe_3)_2\}$ CuCl (9b), $[CuCH_2SiMe_3]_4$, $[Ti](Cl)(CH_2SiMe_3)$ (4), and $[Ti]Cl_2$ (1) is observed; a reaction mechanism for the formation of the latter compounds is discussed. The solid state structures of [Ti](Cl)(CH₂-SiMe₃) (4) and {[Ti](Cl)(C≡CSiMe₃)}CuBr (7b) were determined. Crystals of 4 and 7b are monoclinic, space group $P2_1/n$. 4: $C_{20}H_{37}ClSi_3Ti$, cell constants a = 6.812(2) Å, b = 11.298(6) Å, c = 33.16(1) Å, $\beta = 92.25(3)^\circ$, and Z = 4. **7b**: C₂₁H₃₅BrClCuSi₃Ti, cell constants a = 13.257(7) Å, b = 10.470(5) Å, c = 20.39(1) Å, $\beta = 10.470(5)$ Å, $100.91(3)^{\circ}$, and Z = 4.

Introduction

Recently, we have shown that the mono(σ -alkynyl)titanocene $[(\eta^5-C_5H_2SiMe_3)SiMe_2]_2Ti(Cl)(C\equiv CSiMe_3),^1$ the bis(σ -alkynyl)titanocenes [Ti](C \equiv CR)₂ {[Ti] = ($\eta^5-C_5H_4SiMe_3$)₂Ti; R = Ph, SiMe_3},^{2,3} and the (σ)-1,3-butadiyn-1-yltitanocenes [Ti](Cl)-(C \equiv C $-C\equiv$ CR) and [Ti](C \equiv C $-C\equiv$ CR)₂ (R = C₂H₅, SiMe₃)⁵ can be used as organometallic chelating ligands (organometallic π -tweezers) for the stabilization of monomeric copper(I) fragments CuX (X = singly bonded organic or inorganic ligand) (type **A** and **B** molecules).

The CuX moiety in type **A** molecules is complexed by the chloro group and the alkynyl ligand of the titanocene fragment [Ti](Cl)(C=CR), whereas in compounds of type **B** the CuX entity is η^2 -coordinated by both C=CR groups of the organometallic chelating ligand [Ti](C=CR)₂.¹⁻⁴ Similar bonding

- (3) (a) Lang, H.; Herres, M.; Zsolnai, L.; Imhof, W.; J. Organomet. Chem. 1991, 409, C7. (b) Janssen, M. D.; Herres, M.; Zsolnai, L.; Spek, A. L.; Grove, D. M., Lang, H.; van Koten, G. Inorg. Chem. 1996, 35, 2476. (c) Lang, H.; Herres, M.; Köhler, K.; Blau, S.; Weinmann, S.; Weinmann, M.; Rheinwald, G.; Imhof, W. J. Organomet. Chem. 1995, 505, 85.
- (4) (a) Janssen, M. D.; Herres, M.; Dedieu, A.; Spek, A. L.; Grove, D. M.; Lang, H.; van Koten, G. J. Chem. Soc., Chem. Commun. 1995, 925. (b) Janssen, M. D.; Herres, M.; Zsolnai, L.; Grove, D. M.; Lang, H.; van Koten, G. Organometallics 1995, 14, 1098. (c) Janssen, M. D.; Köhler, K.; Herres, M.; Dedieu, A.; Spek, A. L.; Grove, D. M.; Lang, H.; van Koten, G. J. Am. Chem. Soc. 1996, 118, 4817. (d) Janssen, M. D.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Lang, H.; van Koten, G. J. Organomet. Chem. 1995, 505, 123. (e) Lang, H.; Köhler, K.; Büchner, M. Chem. Ber. 1995, 128, 525. (f) Frosch, W. Diplom Thesis, Universität Heidelberg, 1995.
- (5) Lang, H.; Weber, C. Organometallics 1995, 14, 4415.

situations are found for 1,3-butadiyn-1-yltitanocenes.⁵ Moreover, the organic groups X in type **B** molecules can easily be transferred to suitable substrates.⁴ For enantioselective transfer reactions the starting material must provide chiral information. The chiral information can either arise from the bis(alkynyl) titanocene building block (η^5 -C₅H₅)(η^5 -C₅H₄R)Ti(C=CR')-(C=CR'') (R = R' = R'' = singly bonded organic ligand; R' \neq R'') or from a single enantiomeric pure alkynyl ligand, giving rise to optically active organometallic π -tweezer molecules [Ti]-(C=CR)(C=CR*). For the synthesis of titanocenes, which contain different alkynyl ligands the selective preparation of [Ti](Cl)(C=CR) compounds {[Ti] = (η^5 -C₅H₄SiMe₃)₂Ti; R = Ph, SiMe₃} is necessary at first.

Here, we describe the synthesis of mono(σ -alkynyl)titanocene chlorides, as well as their reaction behavior toward metallated alkynes and copper(I) compounds.

Experimental Section

General Methods. All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were purified by destillation from sodium/benzophenone ketyl; *n*-pentane was purified by destillation from calcium hydride. Infrared spectra were obtained with a Perkin-Elmer 983G spectrometer. ¹H NMR spectra were recorded on a Bruker AC 200 spectrometer operating at 200.132 MHz in the Fourier transform mode; ¹³C NMR spectra were recorded at 50.323 MHz. Chemical shifts are reported in δ units (parts per million) downfield from tetramethylsilane with the solvent as the reference signal. FD, EI, and FAB

^{*} To whom correspondence should be addressed. Fax: +49-6221-54-5707. E-mail: bo0@ix.urz.uni-heidelberg.de.

[®] Abstract published in *Advance ACS Abstracts*, September 1, 1996. (1) Lang, H.; Blau, S; Pritzkow, H.; Zsolnai, L. *Organometallics* **1995**,

<sup>14, 1850.
(2) (</sup>a) Lang, H.; Köhler, K.; Blau, S. *Coord. Chem. Rev.* 1995, 143, 113.
(b) Lang, H.; Weinmann, M. *Synlett* 1996, 1.

Alkynyl-Functionalized Titanocenes

mass spectra were recorded on a Finnigan 8400 mass spectrometer operating in the positive-ion mode. Melting points were determined with use of analytically pure samples, which were sealed in nitrogenpurged capillaries on a Gallenkamp MFB 595 010 M melting point apparatus. Microanalyses were performed by the Organisch-Chemisches Institut der Universität Heidelberg.

Synthesis of $(\eta^5 - C_5 H_4 SiMe_3)_2 Ti(CI)(C \equiv CR)$ (2a, R = Ph; 2b, R = SiMe_3). A solution of LiC \equiv CR (10.50 mmol; R = Ph, 1.14 g; R = SiMe_3, 1.09 g)^{6.7} in diethyl ether (100 mL) was added at 20 °C to a suspension of $(\eta^5 - C_5 H_4 SiMe_3)_2 TiCl_2^8$ (1) (3.93 g, 10.00 mmol) in diethyl ether (100 mL) within 2 h. After another 15 min of stirring, all volatiles were removed *in vacuo*. Filtration of the residue through Celite (*n*pentane, 3 × 3 cm) and evaporation of the volatiles *in vacuo* yielded an orange-red powder (2a) or oil (2b). Compound 2a could be crystallized from *n*-pentane at -30 °C.

2a. Yield: 4.13 g (9.00 mmol, 90%). Mp: 101 °C. IR (KBr, cm⁻¹): 2077 [$\nu_{C=C}$]. MS (FD): m/e 458 [M⁺]. ¹H NMR (200 MHz, CDCl₃): δ 0.32 (s, 18H, C₅H₄Si Me_3); 6.3 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄); 6.7 (m, 2H, C₅H₄); 6.8 (m, 2H, C₅H₄); 7.2–7.3 (m, 5H, Ph). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.1 (Si Me_3); 114.8 (C₅H₄); 117.0 (C₅H₄); 125.0 (C₅H₄); 125.6 (C₅H₄); 126.3 (C₅H₄, C_{ipso}); 122.4 (C=CPh); 126.6 (Ph); 128.0 (Ph); 130.1 (Ph); 131.3 (Ph, C_{ipso}); 148.3 (TiC=C). Anal. Calcd for C₂₄H₃₁ClSi₂Ti (459.03): C, 62.80; H, 6.81. Found: C, 62.78; H, 6.82.

2b. Yield: 3.55 g (7.80 mmol, 78%). IR (KBr, cm⁻¹): $2022 [\nu_{C=C}]$. ¹H NMR (200 MHz, CDCl₃): δ 0.10 (s, 9H, C=SiMe₃); 0.27 (s, 18H, C₅H₄SiMe₃); 6.2 (m, 2H, C₅H₄); 6.4 (m, 2H, C₅H₄); 6.6 (m, 2H, C₅H₄); 6.7 (m, 2H, C₅H₄). Anal. Calcd for C₂₁H₃₅ClSi₃Ti (455.17): C, 55.42; H, 7.75. Found: C, 55.20; H, 7.86.

Synthesis of $(\eta^{5}\text{-}C_5\text{H}_4\text{SiMe}_3)_2\text{Ti}(\text{Cl})(\text{CH}_2\text{SiMe}_3)$ (4). A solution of ClMgCH₂SiMe₃^{8a} (1.47 g, 10.00 mmol) in diethyl ether (50 mL) was added dropwise at 25 °C to a solution of $(\eta^5\text{-}C_5\text{H}_4\text{SiMe}_3)_2\text{Ti}\text{Cl}_2^8$ (1) (3.58 g, 9.00 mmol) in CH₂Cl₂ (150 mL) and stirred for 2 h. Afterward the volatiles were removed *in vacuo*. The residue was dispersed in diethyl ether (200 mL) and filtered through a pad of Celite (diethyl ether, 3 × 3 cm). Concentration of the filtrate yielded 4 as orange needles. Yield: 3.2 g (7.20 mmol, 80%).

Mp: 97 °C. MS (EI): m/e (%) 429 [M⁺ – Me] (3); 401 [M⁺ – 3Me] (26); 357 [M⁺ – CH₂SiMe₃] (100). ¹H NMR (200 MHz, CDCl₃): δ 0.04 (s, 9H, CH₂SiMe₃); 0.29 (s, 18H, C₅H₄SiMe₃); 2.14 (s, 2H, CH₂SiMe₃); 5.8 (m, 2H, C₅H₄); 6.1 (m, 2H, C₅H₄); 6.4 (m, 2H, C₅H₄); 7.1 (m, 2H, C₅H₄). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.1 (C₅H₄SiMe₃); 2.9 (CH₂SiMe₃); 75.6 (CH₂SiMe₃); 110.9 (C₅H₄); 117.0 (C₅H₄); 121.4 (C₅H₄); 128.0 (C₅H₄); 129.3 (C₅H₄, C_{ipso}). Anal. Calcd for C₂₀H₃₇ClSi₃Ti (445.10): C, 53.97; H, 8.38. Found: C, 53.71; H, 8.27.

Synthesis of (η^{5} -C₅H₄SiMe₃)₂Ti(CH₂SiMe₃)(C=CSiMe₃) (3). (η^{5} -C₅H₄SiMe₃)₂Ti(Cl)(CH₂SiMe₃) (4) (450 mg, 1.00 mmol) was added at -25 °C in one portion to a solution of LiC=CSiMe₃^{6,7} (115 mg, 1.10 mmol) in diethyl ether (100 mL). After 2 h of stirring at 25 °C all volatiles were removed *in vacuo*, the residue was dissolved in *n*-pentane (200 mL) and filtered through Celite (*n*-pentane, 3 × 3 cm). Removal of the solvent yielded compound **3** as an orange-red oil. Yield: 430 mg (0.85 mmol, 85%).

IR (KBr, cm⁻¹): 2018 [$\nu_{C=C}$]. MS (EI): m/e (%) 418 [M⁺ – CH₂-SiMe₃] (100); 322 [M⁺ – CH₂SiMe₃ – C₂SiMe₃] (30). ¹H NMR (200 MHz, C₆D₆): δ 0.07 (s, 9H, C=CSiMe₃); 0.24 (s, 9H, CH₂SiMe₃); 0.37 (s, 18H, C₅H₄SiMe₃); 1.70 (s, 2H, CH₂SiMe₃); 5.4 (m, 2H, C₅H₄); 5.9 (m, 2H, C₅H₄); 6.2 (m, 2H, C₅H₄); 7.1 (m, 2H, C₅H₄). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 0.6 (C₅H₄SiMe₃); 0.7 (C=CSiMe₃); 3.3 (CH₂-SiMe₃); 79.3 (CH₂SiMe₃); 111.3 (C₅H₄); 115.8 (C₅H₄); 120.2 (C₅H₄); 123.4 (C=CSiMe₃); 124.4 (C₅H₄); 124.9 (C₅H₄, C_{ipso}); 166.9 (TiC=C). Anal. Calcd for C₂₅H₄₆Si₄Ti (505.86): C, 59.24; H, 9.15. Found: C, 59.17; H, 9.09.

Synthesis of $(\eta^5-C_5H_4SiMe_3)_2Ti(C=CPh)(C=CSiMe_3)$ (5a). A solution of LiC=CSiMe₃^{6,7} (1.09 g, 10.50 mmol) in diethyl ether (50 mL) was added within 15 min to a solution of 2a (4.60 g, 10.00 mmol) in diethyl ether (50 mL) at 20 °C and stirred for 1 h. Evaporation of the volatiles *in vacuo*, filtration of the residue with *n*-pentane through Celite (3 × 3 cm), and removing the volatiles yielded a red oil. Yield: 375 mg (0.72 mmol, 72%).

IR (KBr, cm⁻¹): 2067 [$\nu_{C=CPh}$]; 2014 [$\nu_{C=CSiMe_3}$]. MS (FD): *m/e* 520 [M⁺]. ¹H NMR (200 MHz, CDCl₃): δ 0.07 (s, 9H, C=CSiMe₃); 0.28 (s, 18H, C₅H₄SiMe₃); 6.19 (m, 2H, C₅H₄); 6.27 (m, 2H, C₅H₄); 6.67 (m, 2H, C₅H₄); 6.73 (m, 2H, C₅H₄); 7.1–7.4 (m, 5H, Ph). ¹³C-{¹H} NMR (50 MHz, CDCl₃): δ 0.3 (C=CSiMe₃); 0.4 (C₅H₄SiMe₃); 113.0 (C₅H₄); 113.5 (C₅H₄); 122.8 (C₅H₄); 122.9 (C₅H₄); 124.8 (C₅H₄, C_{ipso}); 125.7 (C=CPh); 126.5 (Ph); 128.0 (Ph); 130.0 (Ph); 131.7 (Ph); 135.6 (C=CSiMe₃); 152.8 (TiC=CPh); 171.1 (TiC=CSiMe₃). Anal. Calcd for C₂₉H₄₀Si₃Ti (520.79): C, 66.88; H, 7.74. Found: C, 66.80; H, 7.75.

Synthesis of $\{(\eta^5-C_5H_4SiMe_3)_2Ti(Cl)(C=CPh)\}CuX$ (6a, X = Cl; 6b, X = Br; 6c, X = I). 2a (200 mg, 0.44 mmol) was added to a suspension of $[CuX]_n$ (0.45 mmol; X = Cl, 50 mg; X = Br, 70 mg; X = I, 80 mg) in tetrahydrofuran (50 mL) and stirred in the dark for 2 h. The reaction solution was filtered through a pad of Celite and all volatile materials were removed *in vacuo*. Compounds 6a-6c were obtained as orange colored solids.

6a. Yield: 220 mg (0.40 mmol, 92%). Mp: 180 °C. IR (KBr, cm⁻¹): 1913 [$\nu_{C=C}$]. MS (FD): m/e (%) 560 [M⁺] (20); 458 [M⁺ - CuCl] (100). ¹H NMR (200 MHz, CDCl₃): δ 0.22 (s, 18H, C₅H₄-SiMe₃); 6.1 (m, 2H, C₅H₄); 6.3 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄); 6.6 (m, 2H, C₅H₄); 7.2-7.4 (m, 3H, Ph); 7.7-7.8 (m, 2H, Ph). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ -0.1 (C₅H₄SiMe₃); 117.2 (C₅H₄); 117.6 (C₅H₄); 121.1 (C₅H₄); 121.9 (C₅H₄); 124.0 (C₅H₄, C_{ipso}); 127.9 (Ph); 128.3 (C=CPh); 128.4 (Ph); 130.6 (Ph); 135.2 (Ph, C_{ipso}); 145.8 (TiC=C). Anal. Calcd for C₂₄H₃₁Cl₂CuSi₂Ti (558.03): C, 51.66; H, 5.60. Found: C, 51.86; H, 5.80.

6b. Yield: 220 mg (0.37 mmol, 85%). Mp: 169 °C. IR (KBr, cm⁻¹): 1933 [$\nu_{C=C}$]. MS (FD): *m/e* 602 [M⁺]. ¹H NMR (200 MHz, CDCl₃): δ 0.22 (s, 18H, C₅H₄Si*Me*₃); 6.2 (m, 2H, C₅H₄); 6.3 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄); 6.6 (m, 2H, C₅H₄); 7.2–7.4 (m, 3H, *Ph*), 7.7–7.8 (m, 2H, *Ph*). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ –0.1 (C₅H₄-Si*Me*₃); 117.3 (C₅H₄); 117.6 (C₅H₄); 121.2 (C₅H₄); 122.0 (C₅H₄); 124.0 (C₅H₄, C_{ipso}); 128.1 (*Ph*); 128.3 (C=*C*Ph); 128.4 (*Ph*); 130.9 (*Ph*); 135.4 (*Ph*, C_{ipso}); 146.2 (Ti*C*=*C*). Anal. Calcd for C₂₄H₃₁BrClCuSi₂Ti (602.46): C, 47.85; H, 5.19. Found: C, 47.68; H, 5.28.

6c. Yield: 270 mg (0.42 mmol, 95%). Mp: 163 °C. IR (KBr, cm⁻¹): 1926 [$\nu_{C=C}$]. MS (FAB): m/e (%) 521 [M⁺ - I] (90); 322 [M⁺ - CuI - C₂Ph - Cl] (100). ¹H NMR (200 MHz, CDCl₃): δ 0.24 (s, 18H, C₃H₄SiMe₃); 6.2 (m, 2H, C₅H₄); 6.3 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄); 6.6 (m, 2H, C₅H₄); 7.2-7.4 (m, 3H, Ph); 7.7-7.8 (m, 2H, Ph). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.0 (C₃H₄SiMe₃); 117.4 (C₅H₄); 118.0 (C₅H₄); 121.3 (C₅H₄); 122.3 (C₅H₄); 124.2 (C₅H₄, C_{ipso}); 128.0 (Ph); 128.3 (Ph); 128.5 (C≡CPh); 131.3 (Ph); 135.3 (Ph, C_{ipso}); 147.9 (TiC≡C). Anal. Calcd for C₂₄H₃₁ClCuISi₂Ti (649.48): C, 44.38; H, 4.81. Found: C, 43.92; H, 4.86.

Synthesis of { $(\eta^5-C_5H_4SiMe_3)_2Ti(Cl)(C=CSiMe_3)$ }CuX (7a, X = Cl; 7b, X = Br). 2b (200 mg, 0.44 mmol) was reacted with [CuX]_n (0.45 mmol; X = Cl, 50 mg; X = Br, 70 mg) under appropriate reaction conditions (see synthesis of compounds **6a**-**6c**), yielding compounds **7a** and **7b** as orange solids.

7a. Yield: 230 mg (0.42 mmol, 95%). Mp: 167°C. IR (KBr, cm⁻¹): 1901 [$\nu_{C=C}$]. MS (FD): *m/e* 552 [M⁺]. ¹H NMR (200 MHz, CDCl₃): δ 0.23 (s, 18H, C₅H₄Si*Me*₃); 0.32 (s, 9H, C≡CSi*Me*₃); 6.1 (m, 2H, C₅H₄); 6.2 (m, 2H, C₅H₄); 6.4 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄); 6.2 (m, 2H, C₅H₄); 6.4 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄). Anal. Calcd for C₂₁H₃₅Cl₂CuSi₃Ti (554.12): C, 45.52; H, 6.37. Found: C, 45.14; H, 6.51.

7b. Yield: 250 mg (0.42 mmol, 94%). Mp: 150 °C. IR (KBr, cm⁻¹): 1899 [$\nu_{C=C}$]. MS (FAB): *m/e* (%) 598 [M⁺] (6); 517 [M⁺ − Br] (75); 418 [M⁺ − CuBr − Cl] (10); 357 [M⁺ − CuBr − C₂SiMe₃] (50); 322 [M⁺ − CuBr − Cl − C₂SiMe₃] (100). ¹H NMR (200 MHz, CDCl₃): δ 0.25 (s, 18H, C₅H₄Si*M*e₃); 0.34 (s, 9H, C≡CSi*M*e₃); 6.1 (m, 2H, C₅H₄); 6.2 (m, 2H, C₅H₄); 6.4 (m, 2H, C₅H₄); 6.5 (m, 2H, C₅H₄). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.0 (C₅H₄Si*M*e₃); 0.2 (C≡CSi*M*e₃); 116.9 (C₅H₄); 118.3 (C₅H₄); 120.8 (C₅H₄); 121.8 (C₅H₄);

⁽⁶⁾ Lang, H.; Keller, H.; Imhof, W.; Martin, S. *Chem. Ber.* **1990**, *123*, 427 and references cited therein.

 ⁽⁷⁾ Brandsma, L.; Verkruijsse, H. Preparative Polar Organometallic Chemistry 1; Springer Verlag: Berlin, 1987, and literature cited therein.
 (2) (2) Larger M C D D: 1997 (2016)

^{(8) (}a) Lappert, M. F.; Pickett, C. J.; Riley, P. I.; Yarrow, P. I. W. J. *Chem. Soc., Dalton Trans.* 1981, 805. (b) Lappert, M. F.; Riley, P. I.; Yarrow, P. I. W.; Atwood, J. L.; Hunter, W. E.; Zaworotho, M. J. J. *Chem. Soc., Dalton Trans.* 1981, 814. (c) Klouras, N.; Nastopoulos, V. Monatsh. Chem. 1991, 122, 551.

127.5 (C_5H_4 , C_{ipso}); 133.5 (C≡CSiMe₃), 176.6 (TiC≡C). Anal. Calcd for $C_{21}H_{35}BrClCuSi_3Ti$ (598.55): C, 42.14; H, 5.89. Found: C, 42.14; H, 5.91.

Synthesis of $\{(\eta^5-C_5H_4SiMe_3)_2Ti(C=CPh)(C=CSiMe_3)\}$ CuX (8a, X = Cl; 8b, X = Br). 5a (150 mg, 0.29 mmol) was reacted with $[CuX]_n$ (0.30 mmol; X = Cl, 30 mg; X = Br, 40 mg) in the above described manner (see synthesis of compounds 6a-6c), yielding compounds 8a and 8b as orange colored solids.

8a. Yield: 165 mg (0.27 mmol, 92%). Mp: 186 °C. IR (KBr, cm⁻¹): 1984, 1956 [$\nu_{C=CPh}$]; 1917 [$\nu_{C=CSiMe_3}$]. MS (FD): *m/e* 583 [M⁺ - CI]. ¹H NMR (200 MHz, CDCl₃): δ 0.22 (s, 18H, C₅H₄Si*Me*₃); 0.33 (s, 9H, C=CSi*Me*₃); 6.01 (m, 2H, C₅H₄); 6.04 (m, 2H, C₅H₄); 6.14 (m, 2H, C₅H₄); 6.20 (m, 2H, C₅H₄); 7.2–7.4 (m, 3H, *Ph*); 7.5–7.7 (m, 2H, *Ph*). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.0 (C₅H₄Si*Me*₃); 0.4 (C=CSi*Me*₃); 113.6 (C₅H₄); 113.9 (C₅H₄); 116.7 (C₅H₄); 116.9 (C₅H₄); 122.7 (C₅H₄, C_{ipso}); 123.5 (C=CPh); 128.0 (*Ph*); 128.5 (*Ph*); 131.9 (*Ph*); 135.5 (*Ph*, C_{ipso}); 138.0 (C=CSiMe₃); 144.5 (Ti*C*=CPh); 169.1 (Ti*C*=CSiMe₃). Anal. Calcd for C₂₉H₄₀ClCuSi₃Ti (619.79): C, 56.20; H, 6.50. Found: C, 55.89; H, 6.27.

8b. Yield: 190 mg (0.28 mmol, 96%). Mp: 190 °C. IR (KBr, cm⁻¹): 1984, 1958 [$\nu_{C=CPh}$]; 1913 [$\nu_{C=CSiMe_3}$]. MS (FAB): m/e (%) 583 [M⁺ - Br] (60); 322 [M⁺ - CuBr - C₂Ph - C₂SiMe₃] (100). ¹H NMR (200 MHz, CDCl₃): δ 0.22 (s, 18H, C₅H₄SiMe₃); 0.35 (s, 9H, C=CSiMe₃); 6.0 (m, 2H, C₅H₄); 6.1 (m, 2H, C₅H₄); 6.15 (m, 2H, C₅H₄); 6.2 (m, 2H, C₅H₄); 7.2-7.4 (m, 3H, *Ph*); 7.5-7.6 (m, 2H, *Ph*). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.0 (C₅H₄SiMe₃); 0.4 (C=CSiMe₃); 113.8 (C₅H₄); 114.1 (C₅H₄); 116.9 (C₅H₄); 117.1 (C₅H₄); 122.9 (C₅H₄, C_{ipso}); 123.8 (C=CPh); 128.0 (*Ph*); 128.8 (*Ph*); 132.4 (*Ph*); 135.5 (*Ph*); 138.4 (C=CSiMe₃); 145.0 (TiC=CPh); 169.8 (TiC=CSiMe₃). Anal. Calcd for C₂₉H₄₀BrCuSi₃Ti (664.24): C, 52.44; H, 6.07. Found: C, 51.96; H, 5.80.

Synthesis of { $(\eta^{5}-C_{5}H_{4}SiMe_{3})_{2}Ti(C \equiv CPh)(C \equiv CSiMe_{3})$ }AgX (10a, X = Cl; 10b, X = Br). 5a (100 mg, 0.19 mmol) was reacted with [AgX]_n (0.20 mmol; X = Cl, 30 mg; X = Br, 40 mg) under appropriate reaction conditions (see synthesis of compounds 6a-6c), yielding compounds 10a and 10b as orange solids.

10a. Yield: 90 mg (0.17 mmol, 81%). Mp: 143 °C. IR (KBr, cm⁻¹): 2015 [$\nu_{C=CPh}$]; 1939 [$\nu_{C=CSiMe_3}$]. MS (FAB): m/e (%) 629 [M⁺ – Cl] (45); 322 [M⁺ – AgCl – C₂Ph – C₂SiMe₃) (100). ¹H NMR (200 MHz, CDCl₃): δ 0.25 (s, 18H, C₅H₄Si*Me*₃); 0.34 (s, 9H, C=CSi*Me*₃); 6.32 (pt, $J_{HH} = 2.4$ Hz, 4H, C₅H₄); 6.37 (pt, $J_{HH} = 2.4$ Hz, 4H, C₅H₄); 7.3–7.4 (m, 3H, *Ph*); 7.6–7.8 (m, 2H, *Ph*). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.0 (C₅H₄Si*Me*₃); 0.4 (C=CSi*Me*₃); 115.7 (C₅H₄); 116.2 (C₅H₄); 119.0 (C₅H₄); 119.1 (C₅H₄); 122.1 (TiC=CPh); 125.0 (C₅H₄, C_{ipso}); 128.3 (*Ph*); 128.5 (*Ph*); 131.2 (*Ph*); 132.0 (TiC=CPh, $J_{CAg} = 16.4$ Hz); 139.9 (*Ph*, C_{ipso}); 143.7 (TiC=CSiMe₃); 154.8 (TiC=CSiMe₃, $J_{CAg} = 16.4$ Hz). Anal. Calcd for C₂₉H₄₀AgClSi₃-Ti (664.10): C, 52.45; H, 6.07. Found: C, 52.31; H, 5.97.

10b. Yield: 120 mg (0.17 mmol, 88%). Mp: 151 °C. IR (KBr, cm⁻¹): 2015 [$\nu_{C=CPh}$]; 1939 [$\nu_{C=CSiMe_3}$]. MS (FAB): m/e (%) 708 [M⁺] (2); 629 [M⁺ - Br] (45); 322 [M⁺ - AgBr - C₂Ph - C₂SiMe₃] (100). ¹H NMR (200 MHz, CDCl₃): δ 0.26 (s, 18H, C₅H₄SiMe₃); 0.35 (s, 9H, C=CSiMe₃); 6.32 (pt, $J_{HH} = 2.2$ Hz, 2H, C_5H_4); 6.38 (pt, $J_{HH} = 2.2$ Hz, 6H, C_5H_4); 7.2–7.4 (m, 3H, *Ph*); 7.6–7.8 (m, 2H, *Ph*). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 0.0 (C_5H_4 SiMe₃); 0.5 (C=CSiMe₃); 115.7 (C_5H_4); 116.3 (C_5H_4); 119.1 (C_5H_4); 119.3 (C_5H_4); 122.0 (TiC=CPh); 125.0 (C_5H_4 , C_{ipso}); 128.3 (*Ph*); 128.7 (*Ph*); 131.5 (*Ph*); 133.1 (*Ph*, C_{ipso}); 140.2 (TiC=CSiMe₃); 144.2 (TiC=CPh, $J_{CAg} = 16.4$ Hz); 155.6 (TiC=CSiMe₃, $J_{CAg} = 16.4$ Hz). Anal. Calcd for $C_{29}H_{40}$ AgBrSi₃Ti (708.55): C, 49.16; H, 5.69.

Structure Determination and Refinement of Compounds 4 and 7b. X-ray data were collected on a Siemens (Nicolet) R3m/V diffractometer for orange crystals sealed in a glass capillary. Accurate unit cell parameters and an orientation matrix were derived from the setting angles of 37 well-centered reflections in the range $13^{\circ} \le 2\theta \le 26^{\circ}$. The unit cell parameters were checked for the presence of the higher lattice symmetry.⁹ Data were corrected for Lorentz polarization effects. An empirical absorption correction was applied based on five reflections in the range $3^{\circ} \le 2\theta \le 52.5^{\circ}$, ω -scan $8.4^{\circ} \le \dot{\omega} \le 22.8^{\circ}$, and $\Delta \omega = 1.2^{\circ}$. The structures were solved by direct methods and

(9) Spek, A. L.; J. Appl. Crystallogr. 1988, 21, 578.

Table 1. Crystallographic Parameters for Compounds 4 and 7b

	4	7b
empirical formula	C20H37ClSi3Ti	C21H35BrClCuSi3Ti
fw	445.10	598.55
space group	$P2_1/n$	$P2_1/n$
a, Å	6.812(2)	13.257(7)
<i>b</i> , Å	11.298(6)	10.470(5)
<i>c</i> , Å	33.16(1)	20.39(1)
β , deg	92.25(3)	100.91(3)
volume, Å ³	2550.1(8)	2779.0(9)
$ ho_{ m calc}$, g cm ⁻³	1.16	1.43
Z	4	4
radiation $(\lambda, \text{\AA})$	Μο Κα (0.710 73)	Μο Κα (0.710 73)
temp, K	295	295
no. of unique reflns	5000	5942
no. of data	2217	3521
with $I \ge 2.5\sigma(I)$		
R_1^a	0.064	0.058
$R_{\rm w}{}^b$	0.051	0.048

^{*a*} $R_1 = [\Sigma||F_0| - |F_c||\Sigma|F_0|]$ only for observed reflections. ^{*b*} $R_w = [\Sigma|F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]]^{0.5}$ for all reflections.

 Table 2.
 Selected Bond Lengths (Å) and Angles (deg) for

 Compound 4

bond lengths		bond angles		
$\begin{array}{c} Ti(1)-Cl(1)\\ Ti(1)-C(19)\\ C(19)-Si(3)\\ Ti(1)-D1^{a}\\ Ti(1)-D2^{a} \end{array}$	2.316(2) 2.209(6) 1.865(6) 2.115 2.071	$\begin{array}{c} Cl(1)-Ti(1)-C(19) \\ Ti(1)-C(19)-Si(3) \\ D1-Ti(1)-D2^{a} \end{array}$	93.5(2) 133.9(3) 131.8	

^{*a*} D1, D2 = Centers of the cyclopentadienyl ligands.

subsequent difference Fourier techniques (SHELXS 86¹⁰). Refinement on *F* was carried out by full-matrix least-squares techniques (SHELX 76¹¹) using reflections with $I \ge 2.5\sigma(I)$ during refinement. Hydrogen atoms were included in calculated positions, riding model. Nonhydrogen atoms were refined with anisotropic displacement parameters.

Weights were optimized in final refinement cycles. Neutral atom scattering factors and anomalous dispersion corrections for structure refinements of compounds **4** and **7b** were taken from ref 12. Crystal data and numerical details of structure determinations and refinements are collected in Table 1. Selected geometrical details of structures of **4** and **7b** are listed in Tables 2 and 3.

Results

Synthesis of Compounds [Ti](Cl)(C=CR) (2). The mono-(σ -alkynyl)-substituted compounds [Ti][Cl)(C=CR) {[Ti] = (η^{5} -C₅H₄SiMe₃)₂Ti; **2a**, R = Ph; **2b**, R = SiMe₃} are obtained in 90% (**2a**) or 78% (**2b**) yield when titanocene dichloride [Ti]-Cl₂ (**1**) is reacted with equimolar amounts of LiC=CR (R = Ph, SiMe₃) in diethyl ether or tetrahydrofuran solutions at 25 °C. The bis(σ -alkynyl)titanocenes [Ti](C=CR)₂ (**5b**, R = Ph; **5c**, R = SiMe₃) were formed as byproducts in 5–10% yield, depending on the reaction conditions used.

$$[Ti] \stackrel{CI}{\underset{C|}{\leftarrow}} \xrightarrow{+ \text{LiC} \equiv CR} [Ti] \stackrel{CI}{\underset{C}{\underset{C}{\leftarrow}}} R$$
1
2a: R = Ph
2b: R = SiMe₃
(1)

After appropriate purification product 2a gave orange-red crystals, which are stable for months in the solid state. In contrast, compound 2b is obtained as an orange oil. In solution

⁽¹⁰⁾ Sheldrick, G. M. SHELX 86. Program for crystal structure determination. University of Göttingen, Göttingen, Germany 1986.

⁽¹¹⁾ Sheldrick, G. M. SHELX 76. Program for crystal structure analysis. University of Cambridge, U.K. 1976.

⁽¹²⁾ Wilson, A. J. C., Ed. International Tables of Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; Vol. C.

both compounds slowly redistribute their ligands, thus forming $[Ti](C \equiv CR)_2$ (5)¹³ and $[Ti]Cl_2$ (1).⁸ Complexes 2 readily dissolve in most common organic solvents.

Reaction of [Ti](Cl)(C \equiv CR) (2) with Organic Nucleophiles. Reaction of [Ti](Cl)(C \equiv CSiMe₃) (2b) with equimolar amounts of ClMgCH₂SiMe₃ in diethyl ether, after appropriate workup, gave air-stable deep orange [Ti](CH₂SiMe₃)(C \equiv CSiMe₃) (3) in 80% yield. Likewise, the preparation of compound 3 can be effected by treatment of [Ti](Cl)(CH₂SiMe₃) (4)⁸ with 1 molar equiv of LiC \equiv CSiMe₃ in diethyl ether solutions at -25 °C.

(i) + CIMgCH₂SiMe₃, - MgCl₂; (ii) + LiC≡CSiMe₃, - LiCl

When compound **2a** or **2b** is reacted with LiC=CR' (R' = Ph, SiMe₃) in diethyl ether solution at 25 °C, the bis(σ -alkynyl)-titanocenes [Ti](C=CR)(C=CR') (**5a**-**5c**) are cleanly formed in 90–95% yield. **5a** is the first example of an organometallic π -tweezer molecule, which contains two different σ -bonded alkynyl ligands (route a, Scheme 1).

Compounds 3 and 5 are soluble in *e.g. n*-pentane and toluene and can be precipitated as orange (3, 5c) or orange-red (5a, 5b) solids by cooling their *n*-pentane solutions to -50 °C. Compounds 3 and 5a tend to melt when their crystals are warmed to 25 °C.

Reaction of [Ti](Cl)(C=CR) (2) and [Ti](C=CPh)-(C=CSiMe₃) (5a) with Copper(I) Compounds. Equimolar addition of [Ti](Cl)(C=CR) (2a, R = Ph; 2b, R = SiMe₃) to a suspension of polymeric $[CuX]_n$ (X = Cl, Br, I) in tetrahydro-furan at 25 °C resulted in the formation of the heterobimetallic titanium–copper complexes {[Ti](Cl)(C=CR)}CuX (6, R = Ph; 7, R = SiMe₃) in quantitative yield (route b, Scheme 1). These compounds feature a monomeric CuX moiety, which is stabilized by the alkynyl ligand C=CR and the chloro group of the [Ti](Cl)(C=CR) fragment.

When $[CuC \equiv CR']_n$ (R' = SiMe₃, Ph)¹⁴ is used instead of $[CuX]_n$ (X = Cl, Br, I), the heterobimetallic tweezer molecules {[Ti](C = CR)(C = CR')}CuCl (8a, R = Ph, R' = SiMe₃; 9a, R = R' = Ph; 9b, R = R' = SiMe₃) are formed (route c, Scheme 1).

The latter molecules feature a monomeric copper(I) chloride entity with the copper atom in a trigonal-planar environment.

The formation of compounds **8** and **9** by reaction of **2** with $(1/n)[CuC \equiv CR']_n$ plausibly can be explained by taking an intermediate such as {[Ti](Cl)(C \equiv CR)}CuC \equiv CR' into account. Intramolecular rearrangement of this complex affords the tweezer-like molecules **8** and **9**.

Moreover, the latter compounds can be synthesized by the reaction of *e.g.* [Ti](C=CPh)(C=CSiMe₃) (**5a**) with [CuX]_n (X = Cl, Br) in tetrahydrofuran at 25 °C (route d, Scheme 1).

Scheme 1. Synthesis of Compounds 5–9

Compounds 6-9 are soluble in toluene, tetrahydrofuran and acetone and can be precipitated as orange to red solids by cooling their tetrahydrofuran/*n*-pentane solutions to -30 °C. In the solid state 6 and 7 can be handled in air for a short period of time while 8 and 9 are stable to air for months.

A further method for the preparation of the tweezer-like molecules **8** and **9** is given by treatment of the mono(σ -alkynyl)-substituted complex [Ti](CH₂SiMe₃)(C=CSiMe₃) (**3**) with equimolar amounts of [CuCl]_n in diethyl ether at 25 °C. Besides dinuclear {[Ti](C=CSiMe₃)₂}CuCl (**9b**),³ the titanocene dichloride [Ti]Cl₂ (**1**),⁸ the neosilyl-substituted titanocene chloride [Ti]-(Cl)(CH₂SiMe₃) (**4**),⁸ and tetrameric [CuCH₂SiMe₃]₄¹⁵ could be isolated.

Possible reaction pathways for the formation of the corresponding products obtained by treatment of $[Ti](CH_2SiMe_3)$ -(C=CSiMe₃) with [CuCl]_n are given in Scheme 2.

^{(13) (}a) Lang, H.; Seyferth, D. Z. Naturforsch. 1990, 45b, 212. (b) for related synthesis of (η⁵-C₅H₅)₂Ti(C≡CSiMe₃)₂ see: Wood, G. L.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1989, 28, 382.
(14) (a) Nast, R. Coord. Chem. Rev. 1982, 47, 89. (b) Corfield, P. W. R.;

 ^{(14) (}a) Nast, K. Coord. Chem. Rev. 1982, 47, 89. (b) Corfield, P. W. R.; Shearer, H. M. M. In Organometallic Compounds; Coates, G. E., Green, M. L. H., Wade, K., Eds.; Chapman and Hall: London, 1977; Vol. 2. (c) Coates, G. E.; Perkin, C. J. Inorg. Nucl. Chem. 1961, 22, 59. (d) Haszeldine, R. W. J. Chem. Soc. 1951, 588.

⁽¹⁵⁾ Jarvis, J. A. J.; Pearce, R.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1977, 999.

Scheme 2. Possible Reaction Pathways for the Reaction of $[Ti](C \equiv CSiMe_3)(CH_2SiMe_3)$ (3) with $[CuCl]_n$

The ability of main-group element¹⁶⁻¹⁸ and organometallic substituted alkynes¹⁻⁵ to break down the polynuclear structure of copper(I) compounds into discrete $[CuX]_n$ (n = 1, 2, 3, ...) aggregates is well-known. Therefore, we assume that the alkynyl ligand Me₃SiC=C in compound 3, as initial step, coordinates in an η^2 -fashion to a copper(I) center, thus forming the intermediate C (route a, Scheme 2). C either eliminates $\frac{1}{4}$ [CuC=CSiMe₃]₄ to produce [Ti](Cl)(CH₂SiMe₃) (4) (route b, Scheme 2) or eliminates ¹/₄[CuCH₂SiMe₃]₄ to afford [Ti]-(Cl)(C≡CSiMe₃) (2b) (route c, Scheme 2). This compound exchanges its ligands under the reaction conditions applied to yield $[Ti]Cl_2$ (1) and $[Ti](C \equiv CSiMe_3)_2$ (5c) (route d, Scheme 2). The final step of the proposed mechanism is the formation of {[Ti](C=CSiMe₃)₂}CuCl (9b) on treatment of 5c with $[CuCl]_n$ (route e, Scheme 2), the synthetic approach to the tweezer-like molecules of type {[Ti](C=CSiMe₃)₂}CuCl most commonly used.^{2,3}

- (16) For example: (a) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Chem. Commun. **1983**, 1156. (b) Lenders, B.; Grove, D. M.; Smeets, W. J. J.; van der Sluis, P.; Spek, A. L.; van Koten, G. Organometallics **1991**, 10, 786. (c) Knotter, D. M.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. **1990**, 112, 5895.
- (17) For example: (a) Coan, P. S.; Folting, K.; Huffman, J. C.; Caulton, K. G. Organometallics, **1989**, *8*, 2724. (b) Gambarotta, S.; Strologo, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Organometallics **1984**, *3*, 1444. (c) He, X.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. **1992**, *114*, 9668. d) Uson, R.; Laguna, A.; Uson, A.; Jones, P. G.; Meyer-Base, K. J. Chem. Soc., Dalton Trans. **1988**, 341.
- (18) (a) Stephan, D. W. Coord. Chem. Rev. 1989, 95, 41. (b) Nadasdi, T. T.; Stephan, D. W. Organometallics 1992, 11, 116. (c) Maelger, H.; Olbrich, F.; Kopf, J.; Abeln, D.; Weiss, E. Z. Naturforsch. 1992, 47B, 1276. (d) Küppers, H. J.; Wieghart, K.; Tsay, Y. H.; Krüger, C.; Nuber, B.; Weiss, J. Angew. Chem. 1987, 99, 583. (e) Braterman, P. S.; Wilson, V. A. J. Organomet. Chem. 1971, 31, 131. (f) Thompson, J. S.; Whitney, J. F.; Inorg. Chem. 1984, 23, 2813. (g) Manukata, M.; Kitagawa, S.; Kawada, I.; Maekawa, M.; Shimono, H. J. Chem. Soc., Dalton Trans. 1992, 2225. (h) Reger, D. L.; Huff, M. F. Organometallics 1992, 11, 69. (i) Lenders, B.; Kläui, W. Chem. Ber. 1990, 123, 2233. (j) Ferrara, J. D.; Tessler-Youngs, C.; Youngs, W. J. Organometallics 1987, 6, 676.

Another possibility to prepare molecule **9b** is given by routes f and g (Scheme 2). The reaction of $[Ti](Cl)(C \equiv CSiMe_3)$ (**2b**) with the earlier formed $[CuC \equiv CSiMe_3]_4$ (route b, Scheme 2) generates a molecule of composition **D**, which undergoes an intramolecular rearrangement, thus yielding dinuclear **9b**. This reaction sequence could independently be evidenced by treatment of **2b** with equimolar amounts of $1/4[CuC \equiv CSiMe_3]_4$ in diethyl ether at 25 °C (route c, Scheme 1).

When copper(I) halides are used instead of copper(I) acetylides, type **D** molecules could be isolated (see above). Since the reaction sequence (a) \rightarrow (c) \rightarrow (f) \rightarrow (g) (Scheme 2) gives no rise to the formation of titanocene dichloride (1) we consider this sequence to be of minor importance. As a final conclusion the formation of the products obtained by the reaction of [Ti]-(CH₂SiMe₃)(C=CSiMe₃) (**3**) and [CuCl]_n can best be explained by the synthetic sequence (a) \rightarrow (c) \rightarrow (d) \rightarrow (e) (Scheme 2).

Structure of the Neosilyl-Substituted Titanocene Chloride 4. The molecular structure of compound **4** has been determined by X-ray diffraction (Figure 1). Crystallographical parameters are given in Table 1; selected bond lengths and angles are listed in Table 2.

Compound **4** crystallizes in the monoclinic space group $P2_1/n$. The geometrical environment of the Ti(1) center is fixed by the arrangement of the chloro group Cl(1), the CH₂SiMe₃ unit and the η^5 -coordinated cyclopentadienyl ligands. The Ti(1)-C(19) distance at 2.209(6) Å is similar to those titanium-to-carbon bonds involving sp³-hybridized carbon atoms as found in *e.g.* $(\eta^5$ -C₅H₅)₂TiMe₂ [2.170(2), 2.181(2) Å],¹⁹ $(\eta^5$ -C₉H₇)₂-TiMe₂ [2.21(2) Å],²⁰ and $(\eta^5$ -C₅H₅)₂Ti(CH₂Ph)₂ [2.239(6), 2.210(5) Å].²¹ In accordance with this, the Ti(1)-Cl(1) distance at 2.316(2) Å in **4** corresponds to other titanocene chloride compounds described.^{1,8,22}

Structure of the Heterobimetallic Titanium-Copper Complex 7b. In order to establish the solid state structure of

(19) Thewalt, U.; Wöhrle, T. J. Organomet. Chem. 1994, 464, C17.

Figure 1. ORTEP drawing (drawn at 50% probability level) of the molecular geometry of compound **4** (with exclusion of the hydrogen atoms) with the atom numbering scheme (Tables 1 and 2).

Figure 2. ORTEP drawing (drawn at 50% probability level) of the molecular geometry of compound **7b** (with exclusion of the hydrogen atoms) with the atom numbering scheme (Tables 1 and 3).

compounds **6** and **7** a X-ray diffraction study was exemplarly carried out on single crystals of **7b** (Figure 2, Table 3).

The molecular structure of compound **7b** comprises a trigonally planar coordinated copper atom, which is η^1 -bonded by the bromo ligand, datively bonded by the chloro atom Cl(1) and η^2 -bonded by the C=C triple bond of the C=CSiMe₃ ligand. The atoms Ti(1), Cu(1), Br(1), Cl(1), Cl(1), and C(12) form a plane (maximum atomic deviation: 0.059 Å). Compound **7b** represents the first example in copper(I) chemistry for which the monomeric structure of the CuBr moiety is caused by the

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Compound 7b

bond lengths		bond angles		
$\begin{array}{c} Ti(1)-Cu(1)\\ Ti(1)-Cl(1)\\ Ti(1)-C(11)\\ Cu(1)-C(11)\\ Cu(1)-C(12) \end{array}$	2.958(3) 2.445(3) 2.107(9) 2.012(9) 2.102(8)	$\begin{array}{c} Ti(1)-C(11)-Cu(1)\\ Ti(1)-C(11)-C(12)\\ Br(1)-Cu(1)-Cl(1)\\ Br(1)-Cu(1)-Cl(1)\\ Br(1)-Cu(1)-C(11)\\ Br(1)-Cu(1)-C(12) \end{array}$	91.8(3) 167.5(8) 108.8(1) 152.1(3) 117.7(3)	
$\begin{array}{l} Cu(1)-Br(1) \\ Cu(1)-Cl(1) \\ C(11)-C(12) \\ D1-Ti(1)^{a} \\ D2-Ti(1)^{a} \end{array}$	2.296(2) 2.314(3) 1.23(1) 2.072 2.030	Cl(1)-Cu(1)-C(12) Cl(1)-Ti(1)-C(11) C(11)-C(12)-Si(3) D1-Ti(1)-D2a	133.5(3) 92.4(2) 165.0(8) 132.3	

^{*a*} D1, D2 = Centers of the cyclopentadienyl ligands.

Figure 3. Comparison of interatomic bond lengths [Å] in compounds $[(\eta^5-C_5H_4SiMe_3)_2Ti(Cl)(C \equiv CSiMe_3)]CuBr (7b)$ (left) and $\{[Me_2Si(\eta^5-C_5H_2SiMe_3)]_2Ti(Cl)(C \equiv CSiMe_3)\}$ CuCl (right).

alkynyl titanocene chloride fragment. As a result of the dative Cl(1)–Cu(1) bonding the Ti(1)–Cl(1) distance is significantly lengthened from approximately 2.30 Å in titanocene chlorides^{18,22} to 2.445(3) Å in **7b**. A molecule that can be taken into account for comparison is the doubly Me₂Si-bridged heterobimetallic titanium–copper complex {[Me₂Si(η^{5} -C₅H₂-SiMe₃)]₂Ti(Cl)(C=CSiMe₃)}CuCl.¹ In this compound the interatomic titanium–chloro distance is at 2.357(4) Å considerably shorter than that in compound **7b** (Figure 3). Reversed bonding situations were observed for the copper-to-chloro distances [**7b**, 2.314(3) Å; {[Me₂Si(η^{5} -C₅H₂-SiMe₃)]₂Ti(Cl)-(C=CSiMe₃)}CuCl, 2.344(2) Å¹] (Figure 3). The established facts point to a stronger dative interaction between the chloro and the copper atom in compound **7b**.

The Cu(1)-Br(1) bond length at 2.296(2) Å in compound 7b is decisively shorter than the according distances in other copper(I) bromide containing molecules [2.40-2.46 Å].^{3,23} As a result of the η^2 -coordination of the C=CSiMe₃ ligand to the copper atom the Ti(1)-C(11)-C(12) [167.5(8)°], as well as the C(11)-C(12)-Si(3) [165.0(8)°] units deviate from linearity. Thereby, the Ti−C≡C−Si entity is trans bent, which is typical for heterobimetallic compounds of the type ${[Ti](C \equiv CSiMe_3)_2}$ -CuR in which both alkynyl ligands are η^2 -bonded to a CuR moiety.¹⁻⁴ Through this deformation different copper-to-carbon bond lengths are observed [Cu(1)-C(11) = 2.012(9) Å andCu(1)-C(12) = 2.102(8) Å; Table 3]. Similar bonding situations are found in molecules of type $\{(\eta^5-C_5H_4SiMe_3)_2Ti (C \equiv CR)_2$ MX [M = Ag, X = halide, pseudohalide, ^{2,3b,24} X = organic ligand;^{2,4a,c} MX = Ni(CO), Ni(PR₃), Ni[P(OR)₃];^{2,25} MX = Co(CO);^{2,26} MX = FeCl₂, CoCl₂, NiCl₂^{2,3a,4,27}].

⁽²⁰⁾ Atwood, J. L.; Hunter, W. E.; Hrncir, D. C.; Samuel, E.; Alt, H.; Rausch, M. D. *Inorg. Chem.* **1975**, *14*, 1757.

⁽²¹⁾ Scholz, J.; Rehbaum, F.; Thiele, K. H.; Goddard, R.; Belz, P.; Krüger, K. H. J. Organomet. Chem. 1993, 443, 93.

⁽²²⁾ For example: (a) Lang, H.; Köhler, K.; Herres, M.; Emmerich, Chr. Z. Naturforsch. 1995, 50B, 923 and literature cited therein. (b) Royo, P. New J. Chem. 1990, 14, 553. (c) Wolff von Gudenberg, D.; Kang, H. C.; Massa, W.; Dehnicke, K.; Maichle-Mössmer, C.; Strähle, J. Z. Anorg. Allg. Chem. 1994, 620, 1719. (d) Cano, A.; Cuenca, T.; Gomez-Sal, P.; Royo, B.; Royo, P. Organometallics 1994, 13, 1688. (e) Bursten, B. E.; Callstrom, M. R.; Jolly, C. A.; Paquette, L. A.; Sivik, M. R.; Tucker, R. S.; Wartchow, C. A. Organometallics 1994, 13, 127.

^{(23) (}a) Aleksandrov, G. G.; Golding, I. R.; Sterlin, S. R.; Sladkov, A. M.; Struchkov, Y. T.; Garbuzova, I. A.; Aleksanyan, V. T. *Izv. Akad. Nauk SSR, Ser. Khim.* **1980**, 2679. (b) Macomber, D. W.; Rausch, M. D. J. *Am. Chem. Soc.* **1983**, *105*, 5325. (c) Maier, G.; Hoppe, M.; Reisenauer, P. Angew. Chem. Suppl. **1982**, 1061. (d) *International Tables for X-ray Crystallography*, The Kynoch Press: Birmingham, U.K., 1986; Vol. III, p 260. (e) Gill, J. T.; Mayerle, J. J.; Welcker, P. S.; Lewis, D. F.; Ucko, D. A.; Barton, D. J.; Stowens, D.; Lippard, S. J. *Inorg. Chem.* **1976**, *15*, 1155.

Moreover, it is found that upon η^2 -coordination the C=C triple bond is lengthened as compared to non-coordinated alkynyl-substituted titanocene derivatives.^{1,2,24b} The bite angle Cl(1)-Ti(1)-C(11) at 92.4(2)° in compound **7b** accords with that found in {[Me₂Si(η^5 -C₅H₂SiMe₃)₂]Ti(Cl)(C=CSiMe₃)}-CuCl [94.9(2)°].¹ As compared to mono(σ -alkynyl)- or bis(σ -alkynyl)-substituted titanocenes these bite angles significantly are reduced in size [(η^5 -C₅H₄SiMe₃)₂Ti(C=CSiMe₃)₂, 102.8°; [Me₂Si(η^5 -C₅H₂SiMe₃)₂]Ti(Cl)(C=CSiMe₃), 99.8(4)°], a phenomenon typical for tweezer-like molecules.²

Reaction of [Ti](Cl)(C=CR) (2) and [Ti](C=CPh)-(C=CSiMe_3) (5a) with Silver(I) Compounds. While the mono(σ -alkynyl)titanocene chlorides [Ti](Cl)(C=CR) (2) readily react with polymeric copper(I) halides [CuX]_n to produce the heterobimetallic titanium-copper molecules {[Ti](Cl)(C=CR)}-CuX (**6a**, R = Ph, X = Cl, Br, I; **7**, R = SiMe_3, X = Cl, Br), no reaction is observed on treatment of compounds **2** with silver-(I) halides [AgX]_n (X = Cl, Br). However, the polymeric structure of [AgX]_n can be broken down to monomeric AgX moieties by making use of the chelating effect of the organometallic π -tweezer [Ti](C=CPh)(C=CSiMe_3) (**5a**).

When compound **5a** is reacted with equimolar amounts of $[AgX]_n$ in tetrahydrofuran at 25 °C the complexes {[Ti]-(C=CPh)(C=CSiMe_3)}AgX (**10a**, X = Cl; **10b**, X = Br) are obtained in 81% or 88% yield, respectively.

Complexes **10a** and **10b** are isostructural with the appropriate copper(I) species {[Ti](C=CPh)(C=CSiMe₃)}CuX. As in these compounds, the silver atom possesses a trigonal-planar environment and the bis(η^2 -alkyne)AgX unit represents a 16-valence-electron entity.^{2,4a,c,24} Compounds **10a** and **10b** show solubility similar to that of the isostructural copper(I) compounds. As expected, the silver(I) species are somewhat lightsensitive.

Discussion

The organometallic mono(σ -alkynyl)titanocene chlorides [Ti]-(Cl)(C \equiv CR) (2) as well as the bis(alkynyl)titanocenes [Ti]-(C \equiv CR)(C \equiv CR') (5) can be used to dissolve monomeric units of polymeric copper(I) halides [CuX]_n.

The copper atom in compounds {[Ti](Cl)(C=CR)}CuX (6, 7) and {[Ti](C=CR)(C=CR')}CuX (8, 9) is σ -bonded by the inorganic ligands X. Moreover, in compounds 6 and 7 the copper atom is complexed by the chloro group as well as the C=C triple bond of the C=CR substituent, whereas in complexes 8 and 9 the CuX unit is embedded between two η^2 -coordinating alkynyl ligands. Therefore, these complexes are predestinated for a detailed study of monomeric copper(I) halides. The same is expected for the isostructural molecules {[Ti](C=CPh)(C=CSiMe_3)} AgX (10).

- (24) (a) Lang, H.; Köhler, K.; Schiemenz, B. J. Organomet. Chem. 1995, 495, 135. (b) Lang, H.; Herres, M.; Zsolnai, L. Organometallics 1993, 12, 5008.
- (25) (a) Lang, H.; Blau, S.; Nuber, B.; Zsolnai, L. Organometallics 1995, 14, 3216. (b) Lang, H.; Imhof, W. Chem. Ber. 1992, 125, 1307.
- (26) (a) Lang, H.; Herres, M.; Imhof, W. J. Organomet. Chem. 1994, 465, 283. (b) Lang, H.; Herres, M.; Zsolnai, L. Bull. Chem. Soc. Jpn. 1993, 66, 429. (c) Lang, H.; Zsolnai, L. J. Organomet. Chem. 1991, 406, C5.
- (27) Herres, M.; Lang, H. J. Organomet. Chem. 1994, 480, 235.

The mono(σ -alkynyl)titanocene chlorides (2) as well as the bis(alkynyl)titanocenes (5) have a pronounced preference for binding to only one copper halide entity, and it is interesting to compare characteristic features of the new complexes with known examples of alkyne-coordinated copper compounds.² The monoanionic bromine in **7b** is η^1 -bonded to the copper(I) center, dative bonded by the chloro atom and η^2 -coordinated by the C=C triple bond of the [Ti](Cl)(C=CSiMe_3) entity. This way of stabilizing a monomeric copper(I) bromide is the first example in copper(I) chemistry.

The copper-bromine bond length at 2.296(2) Å is shorter than according distances in for example dimeric $[\eta^2-Me_3-SiC\equiv CSiMe_3)CuBr]_2$ [2.407(1) Å]^{2,23} or polymeric [CuBr]_n [2.46 Å].²³ In fact for the η^1 -chloro and η^2 -alkyne interaction in combination with the geometric constraints of the mono(σ alkynyl)titanocene chloride fragment in compound **7b** a relative short Ti-Cu distance [2.958(3) Å] is observed.^{2,28}

Besides the X-ray structure analysis hints on the composition of compounds **6–9** are given by NMR and IR spectroscopic measurements. Due to the η^2 -coordination of the C=CR units (R = Ph, SiMe₃) to the copper atom in compounds **6–9**, the C=C stretching vibration is shifted from 2077 cm⁻¹ in **2a**, 2022 cm⁻¹ in **2b**, or 2067 cm⁻¹ (C=CPh) and 2014 cm⁻¹ (C=CSiMe₃) in **5a** to 1926–1935 cm⁻¹ in **6**, 1900 cm⁻¹ in **7**, or 1956 cm⁻¹ (C=CPh) and 1915 cm⁻¹ (C=CSiMe₃) in compounds **8** and **9**, respectively. This shifting indicates a weaker C=C bond in the mono- or bis(σ -alkyne)copper(I) halide complexes **6–9**, a phenomenon typical for π -bonding of organic and organometallic alkyne-copper(I) moieties.^{2a}

In the ¹³C{¹H} NMR spectra it is found that upon η^2 coordination of the C=C triple bonds to the copper atom in complexes **6**–**9** the resonance signals of the C_{α} atoms in the TiC=CR entity are slightly shifted upfield, whereas resonance signals of the C_{β} atoms are shifted downfield. This is in agreement with an observation generally made by changing from noncoordinated to η^2 -coordinated alkynyl substituted titanocenes.

The asymmetric environment around the titanium atom in compounds **6–8** results in the appearance of ABXY resonance patterns for the cyclopentadienyl protons in the region 6.0–6.8 ppm. For the SiMe₃ and Ph groupings the ¹H NMR spectra show the expected simplicity with the resonance signals of the SiMe₃ groups at around 0.3 and 0.1 ppm, as well as for the phenyl protons in the 7.1–7.8 ppm region.

The ¹H and ¹³C NMR spectra of solutions of compounds **6–9** in toluene- d_8 remain essentially unchanged in the temperature region of 193–353 K. Moreover, cryoscopic molecular weight determinations in benzene showed that these complexes exist as monomeric species in solution. These data are consistent with a monomeric structure established for those molecules in the solid state (see above).

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, Volkswagen-Stiftung, and Deutscher Akademischer Austauschdienst (I.Y.W.). We thank Dr. Chr. Limberg and Mrs. S. Ahrens for many discussions.

Supporting Information Available: Tables of crystal data and details of the structure determinations, final coordinates and equivalent isotropic thermal parameters of the non-hydrogen atoms, hydrogen atom positions and isotropic thermal parameters, anisotropic thermal parameters, bond distances and bond angles for compounds **4** and **7b** (13 pages). Ordering information is given on any current masthead page.

IC960115X

⁽²⁸⁾ Köhler, K.; Zsolnai, L.; Driess, A.; Silverio, S.; Hyla-Kryspin, I.; Gleiter, R.; Lang, H. *Organometallics*, manuscript in preparation.